940 resultados para Nasal vaccines


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To specifically induce a mucosal antibody response to purified human papillomavirus type 16 (HPV16) virus-like particles (VLP), we immunized female BALB/c mice orally, intranasally, and/or parenterally and evaluated cholera toxin (CT) as a mucosal adjuvant. Anti-HPV16 VLP immunoglobulin G (IgG) and IgA titers in serum, saliva, and genital secretions were measured by enzyme-linked immunosorbent assay (ELISA). Systemic immunizations alone induced HPV16 VLP-specific IgG in serum and, to a lesser extent, in genital secretions but no secretory IgA. Oral immunization, even in the presence of CT, was inefficient. However, three nasal immunizations with 5 microgram of VLP given at weekly intervals to anesthetized mice induced high (>10(4)) and long-lasting (>15 weeks) titers of anti-HPV16 VLP antibodies in all samples, including IgA and IgG in saliva and genital secretions. CT enhanced the VLP-specific antibody response 10-fold in serum and to a lesser extent in saliva and genital secretions. Nasal immunization of conscious mice compared to anesthetized mice was inefficient and correlated with the absence of uptake of a marker into the lung. However, a 1-microgram VLP systemic priming followed by two 5-microgram VLP intranasal boosts in conscious mice induced both HPV16 VLP-specific IgG and IgA in secretions, although the titers were lower than in anesthetized mice given three intranasal immunizations. Antibodies in serum, saliva, and genital secretions of immunized mice were strongly neutralizing in vitro (50% neutralization with ELISA titers of 65 to 125). The mucosal and systemic/mucosal HPV16 VLP immunization protocols that induced significant titers of neutralizing IgG and secretory IgA in mucosal secretions in mice may be relevant to genital HPV VLP-based human vaccine trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strategies for the development of new vaccines against Streptococcus pneumoniae infections try to overcome problems such as serotype coverage and high costs, present in currently available vaccines. Formulations based on protein candidates that can induce protection in animal models have been pointed as good alternatives. Among them, the Pneumococcal Surface Protein A (PspA) plays an important role during systemic infection at least in part through the inhibition of complement deposition on the pneumococcal surface, a mechanism of evasion from the immune system. Antigen delivery systems based on live recombinant lactic acid bacteria (LAB) represents a promising strategy for mucosal vaccination, since they are generally regarded as safe bacteria able to elicit both systemic and mucosal immune responses. In this work, the N-terminal region of clade I PspA was constitutively expressed in Lactobacillus casei and the recombinant bacteria was tested as a mucosal vaccine in mice. Nasal immunization with L. casei-PspA 1 induced anti-PspA antibodies that were able to bind to pneumococcal strains carrying both clade 1 and clade 2 PspAs and to induce complement deposition on the surface of the bacteria. In addition, an increase in survival of immunized mice after a systemic challenge with a virulent pneumococcal strain was observed. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of the nasal route for drug delivery has attracted much interest in recent years in the pharmaceutical field. Local and principally systemic drug delivery can be achieved by this route of administration. But the nasal route of delivery is not applicable to all drugs. Polar drugs and some macromolecules are not absorbed in sufficient concentration due to poor membrane permeability, rapid clearance and enzymatic degradation into the nasal cavity. Thus, alternative means that help overcome these nasal barriers are currently in development. Absorption enhancers such as phospholipids and surfactants are constantly used, but care must be taken in relation to their concentration. Drug delivery systems including liposomes, cyclodextrins, micro- and nanoparticles are being investigated to increase the bioavailability of drugs delivered intranasally. This review article discusses recent progress and specific development issues relating to colloidal drug delivery systems in nasal drug delivery. © 2006 Bentham Science Publishers Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we have established the efficient mucosal delivery of vaccines using absorption enhancers and chitosan. In addition, the use of chitosan was shown to enhance the action of other known adjuvants, such as CTB or Quil-A. Collectively, the results presented herein indicate that chitosan has excellent potential as a mucosal adjuvant. We have evaluated a number of absorption enhancers for their adjuvant activity in vivo. Polyornithine was shown to engender high scrum immune reasons to nasally delivered antigens, with higher molecular weight polyornithine facilitating the best results. We have demonstrated for the first time that vitamin E TPGS can act as mucosal adjuvant. Deoxycholic acid, cyclodextrins and acylcarnitines were also identified as effective mucosal adjuvants and showed enhanced immune responses to nasally delivered TT, DT and Yersinia pestis V and F1 antigens. Previously, none of these agents, common in their action as absorption enhancing agents, have been shown to have immunopotentiating activity for mucosal immunisation. We have successfully developed novel surface modified microspheres using chitosan as an emulsion stabiliser during the preparation of PLA microspheres. It was found that immune responses could be substantially increased, effectively exploiting the immunopenetrating characteristics of both chitosan and PLA microspheres in the same delivery vehicle. In the same study, comparison of intranasal and intramuscular routes of administration showed that with these formulations, the nasal route could be as effective as intramuscular delivery, highlighting the potential of mucosal administration for these particulate delivery systems. Chitosan was co-administered with polymer microspheres. It was demonstrated that this strategy facilitates markedly enhanced immune responses in both magnitude and duration following intramuscular administration. We conclude that this combination shows potential for single dose administration of vaccines. In another study, we have shown that the addition of chitosan to alum adsorbed TT was able to enhance immune responses. PLA micro/nanospheres were prepared and characterised with discreet particle size ranges. A smaller particle size was shown to facilitate higher scrum IgG responses following nasal administration. A lower antigen loading was additionally identified as being preferential for the induction of immune responses in combination with the smaller particle size. This may be due to the fact that the number of particles will be increased when antigen loading is low, which may in turn facilitate a more widespread uptake of particles. PLA lamellar particles were prepared and characterised. Adsorbed TT was evaluated for the potential to engender immune responses in vivo. These formulations were shown to generate effective immune responses following intramuscular administration. Positively charged polyethylcyanoacrylate and PLA nanoparticies were designed and characterised and their potential as delivery vehicles for DNA vaccines was investigated. Successful preparation of particles with narrow size distribution and positive surface charge (imparted by the inclusion of chitosan) was achieved. In the evaluation of antibody responses to DNA encoded antigen in the presence of alum administered intranasally, discrimination between the groups was only seen following intramuscular boosting with the corresponding protein. Our study showed that DNA vaccines in the presence of either alum or Quil-A may advantageously influence priming of the immune system by a mucosal route. The potential for the combination of adjuvants, Quil-A and chitosan, to enhance antibody responses to plasmid encoded antigen co-administered with the corresponding protein antigen was shown and this is worthy of further investigation. The findings here have identified novel adjuvants and approaches to vaccine delivery. In particular, chitosan or vitamin E TPGS are shown here to have considerable promise as non-toxic, safe mucosal adjuvants. In addition, biodegradable mucoadhesive delivery systems, surface modified with chitosan in a single step process, may have application for other uses such as drug and gene delivery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. We investigated the likely impact of vaccines on the prevalence of and morbidity due to Chlamydia trachomatis (chlamydia) infections in heterosexual populations. Methods.An individual‐based mathematical model of chlamydia transmission was developed and linked to the infection course in chlamydia‐infected individuals. The model describes the impact of a vaccine through its effect on the chlamydial load required to infect susceptible individuals (the “critical load”), the load in infected individuals, and their subsequent infectiousness. The model was calibrated using behavioral, biological, and clinical data. Results.A fully protective chlamydia vaccine administered before sexual debut can theoretically eliminate chlamydia epidemics within 20 years. Partially effective vaccines can still greatly reduce the incidence of chlamydia infection. Vaccines should aim primarily to increase the critical load in susceptible individuals and secondarily to decrease the peak load and/or the duration of infection in vaccinated individuals who become infected. Vaccinating both sexes has a beneficial impact on chlamydia‐related morbidity, but targeting women is more effective than targeting men. Conclusions.Our findings can be used in laboratory settings to evaluate vaccine candidates in animal models, by regulatory bodies in the promotion of candidates for clinical trials, and by public health authorities in deciding on optimal intervention strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) infections are emerging in southeast Queensland, Australia, but the incidence of carriage of CA-MRSA strains is unknown. The aim of this study was to assess the nasal carriage rate of S. aureus, including CA-MRSA strains, in the general adult population of southeast Queensland. 396 patients presenting to general practices in two Brisbane suburbs and 303 volunteers randomly selected from the electoral rolls in the same suburbs completed a medical questionnaire and had nasal swabs performed for S. aureus. All isolates of S. aureus underwent antibiotic susceptibility testing and single-nucleotide polymorphism (SNP) and binary typing, including determination of Panton–Valentine leukocidin (PVL). The nasal carriage rate of methicillin-susceptible S. aureus (MSSA) was 202/699 (28%), a rate similar to that found in other community-based nasal carriage studies. According to multivariate analysis, nasal carriage of S. aureus was associated with male sex, young adult age group and Caucasian ethnicity. Only two study isolates (one MSSA and one CA-MRSA) carried PVL. The nasal carriage rate of MRSA was low, at 5/699 (0.7%), and only two study participants (0.3%) had CA-MRSA strains. CA-MRSA is an emerging cause of infection in southeast Queensland, but as yet the incidence of carriage of CA-MRSA in the general community is low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: High-flow nasal cannulae (HFNC) create positive oropharyngeal airway pressure but it is unclear how their use affects lung volume. Electrical impedance tomography (EIT) allows assessment of changes in lung volume by measuring changes in lung impedance. Primary objectives were to investigate the effects of HFNC on airway pressure (Paw) and end-expiratory lung volume (EELV), and to identify any correlation between the two. Secondary objectives were to investigate the effects of HFNC on respiratory rate (RR), dyspnoea, tidal volume and oxygenation; and the interaction between body mass index (BMI) and EELV. Methods: Twenty patients prescribed HFNC post-cardiac surgery were investigated. Impedance measures, Paw, PaO2/FiO2 ratio, RR and modified Borg scores were recorded first on low flow oxygen (nasal cannula or Hudson face mask) and then on HFNC. Results: A strong and significant correlation existed between Paw and end-expiratory lung impedance (EELI) (r=0.7, p<0.001). Compared with low flow oxygen, HFNC significantly increased EELI by 25.6% (95% CI 24.3, 26.9) and Paw by 3.0 cmH2O (95% CI 2.4, 3.7). RR reduced by 3.4 breaths per minute (95% CI 1.7, 5.2) with HFNC use, tidal impedance variation increased by 10.5% (95% CI 6.1, 18.3) and PaO2/FiO2 ratio improved by 30.6 mmHg (95% CI 17.9, 43.3). HFNC improved subjective dyspnoea scoring (p=0.023). Increases in EELI were significantly influenced by BMI, with larger increases associated with higher BMIs (p<0.001). Conclusions: This study suggests that HFNC improve dyspnoea and oxygenation by increasing both EELV and tidal volume, and are most beneficial in patients with higher BMIs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococci are important pathogenic bacteria responsible for a range of diseases in humans. The most frequently isolated microorganisms in a hospital microbiology laboratory are staphylococci. The general classification of staphylococci divides them into two major groups; Coagulase-positive staphylococci (e.g. Staphylococcus aureus) and Coagulase-negative staphylococci (e.g. Staphylococcus epidermidis). Coagulase-negative staphylococcal (CoNS) isolates include a variety of species and many different strains but are often dominated by the most important organism of this group, S. epidermidis. Currently, these organisms are regarded as important pathogenic organisms causing infections related to prosthetic materials and surgical wounds. A significant number of S. epidermidis isolates are also resistant to different antimicrobial agents. Virulence factors in CoNS are not very clearly established and not well documented. S. epidermidis is evolving as a resistant and powerful microbe related to nosocomial infections because it has different properties which independently, and in combination, make it a successful infectious agent, especially in the hospital environment. Such characteristics include biofilm formation, drug resistance and the evolution of genetic variables. The purpose of this project was to develop a novel SNP genotyping method to genotype S. epidermidis strains originating from hospital patients and healthy individuals. High-Resolution Melt Analysis was used to assign binary typing profiles to both clinical and commensal strains using a new bioinformatics approach. The presence of antibiotic resistance genes and biofilm coding genes were also interrogated in these isolates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant-produced vaccines are a much-hyped development of the past two decades, whose time to embrace reality may have finally come. Vaccines have been developed against viral, bacterial, parasite and allergenic antigens, for humans and for animals; a wide variety of plants have been used for stable transgenic expression as well as for transient expression via Agrobacterium tumefaciens and plant viral vectors. A great many products have shown significant immunogenicity; several have shown efficacy in target animals or in animal models. The realised potential of plant-produced vaccines is discussed, together with future prospects for production and registration. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary: The concept of using plants to produce high-value pharmaceuticals such as vaccines is 20 years old this year and is only now on the brink of realisation as an established technology. The original reliance on transgenic plants has largely given way to transient expression; proofs of concept for human and animal vaccines and of efficacy for animal vaccines have been established; several plant-produced vaccines have been through Phase I clinical trials in humans and more are scheduled; regulatory requirements are more clear than ever, and more facilities exist for manufacture of clinic-grade materials. The original concept of cheap edible vaccines has given way to a realisation that formulated products are required, which may well be injectable. The technology has proven its worth as a means of cheap, easily scalable production of materials: it now needs to find its niche in competition with established technologies. The realised achievements in the field as well as promising new developments will be reviewed, such as rapid-response vaccines for emerging viruses with pandemic potential and bioterror agents. © 2010 The Author. Journal compilation © 2010 Blackwell Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Human immunodeficiency virus type 1 (HIV-1) has infected more than 40 million people worldwide, mainly in sub-Saharan Africa. The high prevalence of HIV-1 subtype C in southern Africa necessitates the development of cheap, effective vaccines. One means of production is the use of plants, for which a number of different techniques have been successfully developed. HIV-1 Pr55Gag is a promising HIV-1 vaccine candidate: we compared the expression of this and a truncated Gag (p17/p24) and the p24 capsid subunit in Nicotiana spp. using transgenic plants and transient expression via Agrobacterium tumefaciens and recombinant tobamovirus vectors. We also investigated the influence of subcellular localisation of recombinant protein to the chloroplast and the endoplasmic reticulum (ER) on protein yield. We partially purified a selected vaccine candidate and tested its stimulation of a humoral and cellular immune response in mice. Results Both transient and transgenic expression of the HIV antigens were successful, although expression of Pr55Gag was low in all systems; however, the Agrobacterium-mediated transient expression of p24 and p17/p24 yielded best, to more than 1 mg p24/kg fresh weight. Chloroplast targeted protein levels were highest in transient and transgenic expression of p24 and p17/p24. The transiently-expressed p17/p24 was not immunogenic in mice as a homologous vaccine, but it significantly boosted a humoral and T cell immune response primed by a gag DNA vaccine, pTHGagC. Conclusion Transient agroinfiltration was best for expression of all of the recombinant proteins tested, and p24 and p17/p24 were expressed at much higher levels than Pr55Gag. Our results highlight the usefulness of plastid signal peptides in enhancing the production of recombinant proteins meant for use as vaccines. The p17/p24 protein effectively boosted T cell and humoral responses in mice primed by the DNA vaccine pTHGagC, showing that this plant-produced protein has potential for use as a vaccine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium bovis BCG is considered an attractive live bacterial vaccine vector. In this study, we investigated the immune response of baboons to a primary vaccination with recombinant BCG (rBCG) constructs expressing the gag gene from a South African HIV-1 subtype C isolate, and a boost with HIV-1 subtype C Pr55 gag virus-like particles (Gag VLPs). Using an interferon enzyme-linked immunospot assay, we show that although these rBCG induced only a weak or an undetectable HIV-1 Gag-specific response on their own, they efficiently primed for a Gag VLP boost, which strengthened and broadened the immune responses. These responses were predominantly CD8+ T cell-mediated and recognised similar epitopes as those targeted by humans with early HIV-1 subtype C infection. In addition, a Gag-specific humoral response was elicited. These data support the development of HIV-1 vaccines based on rBCG and Pr55 gag VLPs. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This relatively new biennial meeting - the first was in Prague in 2005 - was chaired by Julian Ma (Guy's Hospital, London, UK), with Mario Pezzotti (University of Verona, Italy) as local organizer, and attracted approximately 180 delegates from 25 countries. The theme was 'Plant Expression Systems for Recombinant Pharmacologics': there were 46 talks gathered into two plenaries, 12 themed sessions and 72 posters. Topics covered included publicly funded and commercial developments, innovation, regulation and commercialization, competition with conventional technology, manufacture and new products. © 2009 Expert Reviews Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human papillomaviruses are the etiological agents of cervical cancer, one of the two most prevalent cancers in women in developing countries. Currently available prophylactic vaccines are based on the L1 major capsid protein, which forms virus-like particles when expressed in yeast and insect cell lines. Despite their recognized efficacy, there are significant shortcomings: the vaccines are expensive, include only two oncogenic virus types, are delivered via intramuscular injection and require a cold chain. Plant expression systems may provide ways of overcoming some of these problems, in particular the expense. In this article, we report recent promising advances in the production of prophylactic and therapeutic vaccines against human papillomavirus by expression of the relevant antigens in plants, and discuss future prospects for the use of such vaccines. © 2010 Expert Reviews Ltd.